Supported planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy.

نویسندگان

  • Z V Leonenko
  • A Carnini
  • D T Cramb
چکیده

We have used magnetic alternating current mode atomic force microscopy (MAC-AFM) to investigate the formation of supported phospholipid bilayers (SPB) by the method of vesicle fusion. The systems studied were dioleoylphosphatidylcholine (DOPC) on mica and mica modified with 3-aminopropyl-triethoxy-silane (APTES), and DOPC vesicles with gramicidin incorporated on mica and APTES-modified mica. The AFM images reveal three stages of bilayer formation: localized disklike features that are single bilayer footprints of the vesicles, partial continuous coverage, and finally complete bilayer formation. The mechanism of supported phospholipid bilayers formation is the fusion of proximal vesicles, rather than surface disk migration. This mechanism does not appear to be affected by incorporation of gramicidin or by surface modification. Once formed, the bilayer develops circular defects one bilayer deep. These defects grow in size and number until a dynamic equilibrium is reached.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing small unilamellar EggPC vesicles on mica surface by atomic force microscopy.

Sonicated small unilamellar egg yolk phosphatidylcholine (EggPC) vesicles were investigated using atomic force microscopy (AFM) imaging and force measurements. Three different topographies (convex, planar, and concave shape) of the EggPC vesicles on the mica surface were observed by tapping mode in fluid, respectively. It was found that the topography change of the vesicles could be attributed ...

متن کامل

Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion.

The adsorption of large unilamellar vesicles composed of various combinations of phosphatidylcholine, phosphatidylethanolamine (PE), monomethyl PE, and dimethyl PE (PE-Me2) onto a glass surface was studied using fluorescence microscopy. The average lipid geometry within the vesicles, described mathematically by the average intrinsic curvature, C(0,ave), was methodically altered by changing the ...

متن کامل

Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.

We present simple soft lithographic methods for patterning supported lipid bilayer (SLB) membranes onto a surface and inside microfluidic channels. Micropatterns of polyethylene glycol (PEG)-based polymers were fabricated on glass substrates by microcontact printing or capillary moulding. The patterned PEG surfaces have shown 97 +/- 0.5% reduction in lipid adsorption onto two dimensional surfac...

متن کامل

α-Hemolysin pore formation into a supported phospholipid bilayer using cell-free expression.

Cell-free protein synthesis is becoming a serious alternative to cell-based protein expression. Cell-free systems can deliver large amounts of cytoplasmic recombinant proteins after a few hours of incubation. Recent studies have shown that membrane proteins can be also expressed in cell-free reactions and directly inserted into phospholipid membranes. In this work, we present a quantitative met...

متن کامل

Direct Visualization of Vesicle - Bilayer Complexes by Atomic Force Microscopy

Interactions between phospholipid vesicles and bilayers play a central role in cell physiology, enabling secretion, signaling, and intracellular transport. In many instances these processes require fusion between membranes. Considerable attention has been paid to acquiring the structural details of proteins that mediate fusion;1 however, less is known about the structure and organization of lip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1509 1-2  شماره 

صفحات  -

تاریخ انتشار 2000